
Visualizing Compiled Executables for Malware Analysis

Daniel A. Quist∗

New Mexico Tech
Los Alamos National Laboratory

Lorie M. Liebrock†

New Mexico Tech

ABSTRACT

Reverse engineering compiled executables is a task with a steep
learning curve. It is complicated by the task of translating assem-
bly into a series of abstractions that represent the overall flow of a
program. Most of the steps involve finding interesting areas of an
executable and determining their overall functionality. This paper
presents a method using dynamic analysis of program execution to
visually represent the overall flow of a program. We use the Ether
hypervisor framework to covertly monitor a program. The data is
processed and presented for the reverse engineer. Using this method
the amount of time needed to extract key features of an executable is
greatly reduced, improving productivity. A preliminary user study
indicates that the tool is useful for both new and experienced users.

Keywords: Reverse Engineering, Visualization, Dynamic Analy-
sis

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

Modern day compiled executables are extremely large and compli-
cated. Furthermore the language available for reverse engineering
is assembly and it is a daunting task to analyze programs. The
learning curve necessary to master reversing is quite steep. Once
the skills are mastered, the process is inherently labor intensive and
therefore costly.

The primary task of a reverse engineer is to determine the func-
tionality of a program. Although determining the intent of the code
would be valuable, it is even more difficult to discern than the func-
tionality is. Reverse engineers use a variety of tools to assist with
the process. These include static disassemblers, debuggers, system
call trackers, and scripting tools. Tracking the execution of a pro-
gram is a task that is difficult as malware actively tries to avoid
detection. It is imperative that modern tools measure and analyze
executables with no detectable impact to the executable.

Most often when analyzing a particular executable, knowing
where to start is the biggest problem. The amount of information
presented can be overwhelming. Experience and skill can aid in
this process. Reducing the amount of time necessary to understand
the overall program layout yields large increases in reverse engineer
productivity. When a program is obfuscated by packers and other
software armoring tools, this further slows down the analysis. With
this in mind we present our framework to facilitate initial program
comprehension and deobfuscation.

Two main classes of tools exist: static and dynamic tools. Static
analysis tools include disassemblers (such as IDA Pro), string
searching tools, and signature matching systems (including many
anti-virus programs). Dynamic analysis tools include system call

∗e-mail: dquist@nmt.edu
†e-mail: liebrock@cs.nmt.edu

and operating system state tracking, such as the Sysinternals’ Pro-
cessmon tool, and debuggers, such as OllyDbg, SoftICE, and GDB.
The run-time of an executable is closely controlled with these tools.

To aid in the reverse engineering process we set out with the
following goals. First, quickly determine the original entry point
of packed or compressed executables. This is a large task that can
be complicated depending upon the sophistication of the program.
Second, aid in the understanding of the overall composition of the
program. Specifically highlight the most commonly executed por-
tions of the program.

This paper makes the following contributions: We show that the
overall process of analyzing malware and other executables can be
shortened via our visualization tool. We provide a covert method
for monitoring running programs via modifications to the Ether
framework. Finally, we integrate all of our tools with established
reverse engineering tools to speed analysis.

The paper is organized in the following sections. A discussion
of related work is in Section 2. Section 3 outlines a reverse engi-
neering process. In section 4, we outline the VERA (Visualization
of Executables for Reversing and Analysis) architecture. This in-
cludes modifications to Ether, data organization and graph layout,
and finally the presentation system. Next, in section 6, we apply
this visualization to the Mebroot worm. We then show results from
our user study in section 7. Finally, we end with the conclusion and
future work section.

2 PREVIOUS AND RELATED WORK

Using hardware virtual machine hypervisors for monitoring pro-
gram execution was discussed extensively by Dinaburg et al. [5]
for the use of malware analysis. The discussions of the modifica-
tions we have made to this framework are discussed in section 4.1.
Royal used a similar system but with the Linux kernel virtual ma-
chine architecture [16]. Using Dynamic instrumentation systems to
effectively monitor program execution was suggested by the SPiKE
framework [20]. Run-time debugging of malware has also been
proposed by Cifuentes et al. as a method for rapidly understand-
ing program execution [4]. The PIN system has been used by Ma
et al. for tracing the injection of malicious code into a vulnerable
service [13]. The importance of analyzing dynamic behavior was
also illustrated by the TTanalyze tool [2] [14]. Modifications to
traditional virtual machine architectures have been used to aid in
malware analysis in [12, 17].

Visualization of program execution has been used in the past
with good results. Analysis has centered on programs with source
code available, or for security analysis of unobfuscated code (such
as Microsoft executables). Xia et al. monitored system calls of
a running executable to show taint propagation and system call
flow for a process [21]. Other systems such as those presented
by Telea and Voinea demonstrate the effectiveness with available
source code [19]. Bohnet et al. provide a method to visually ex-
plore C and C++ source code [3]. Similar to our technique, they
emphasize the importance of distilling a large program (> 1 mil-
lion lines of code) into its base portions. This distillation process
is important to develop a high-level overview of the overall flow of
a program to highlight relevant portions. The VERA architecture
discerns itself from this work by focusing on compiled code with a
focus on basic-block malware analysis.



Two commercial products provide static analysis of compiled ex-
ecutables. BinNavi by Zynamics provides a graph based analysis
method for highlighting dependencies of a program [23]. This pro-
gram highlights program flow and structure by using function calls.
Responder by HBGary, Inc. likewise focuses on the function calls
of software to highlight memory access, variables, and system calls
[10]. These two products both rely on debugger interfaces or static
analysis tools, which have been shown to be unreliable [6, 8, 7].

3 REVERSE ENGINEERING WORK-FLOW

Reverse engineering is a process that can be very time consuming.
Determining the function and intent of a program is difficult and
requires a lot of patience. The analyst can very quickly develop
fatigue from analyzing the code. The following process serves as a
high-level technique for reverse engineering an unknown binary.

In this section we will define a sample method that we have
found useful when reverse engineering a program. This is by no
means the standard method, as no such thing exists, but one that we
have found effective for reverse engineering.

The process can be broken down into the following steps: First
set up an isolated environment. Next execute the program to look
for any discerning output. Use tools to monitor changes to the op-
erating system while executing. Third, load the program into tools
such as IDA Pro to begin the reverse engineering process, deobfus-
cating the binary if required. Finally identify and analyze relevant
and interesting portions to focus on.

While there may be many means to developing a sense of func-
tionality and intent of a program, we have found this one to be very
useful.

3.1 Setup of an Isolated Analysis Environment

Most reverse engineering deals with malicious or potentially mali-
cious code which is the primary focus of this paper. It is important
to have an isolated environment to contain any nefarious activity
that might occur. The common practice is to use a virtualization
system such as VMWare or Virtual PC. An operating system, most
commonly Windows XP, is installed and configured in a manner
that represents a common user’s environment.

Each virtualization system should have the ability to take a snap-
shot of the current state of the system. Before any analysis is per-
formed, this is a necessary baseline. First, it provides a known-good
system to compare with subsequent system state during execution.
Second, restoring to this configuration is often necessary to under-
stand the full execution process of a program and allows for quick
recovery to the pre-infection state. Once the snapshot is taken, the
program can be executed and analyzed.

3.2 Execution and Initial Analysis

Executing the malware in a controlled virtualized environment pro-
vides safety to the analyst from infection. This type of reverse en-
gineering is often referred to as dynamic reverse engineering. The
goal is to capture the overall impact that the software has on a sys-
tem without focusing on the program’s actual code.

This gives us a high-level overview of what the program is doing.
Looking at the changes affected on the operating system shows any
modifications or destructive activities performed. Common tools
such as Microsoft’s Sysinternals tools monitor for system call exe-
cutions, modifications to files, and registry modifications. Using
tools such as Wireshark, the program’s network activity can be
monitored.

The goal of this section of analysis is to quickly determine what
to look for inside of the disassembled code. Without understanding
the initial behavior, discerning the meaning of the disassembly is
substantially more difficult.

3.3 Deobfuscation

Many new malware samples are armored. This is done primarily
to prevent signature detection, debugging, and reverse engineer-
ing. Removing these obfuscations is a necessary step prior anal-
ysis. These can be any manner of operations. Typical examples are
encoding or encrypting the executable, detecting virtual machines,
and detecting debuggers. Since code is the primary tool for un-
derstanding program execution, any protections must be removed.
Guo et al. provide a good overview of the packing and compression
problems in modern executables [8].

Solutions to removing packers can rely on static methods such
as those by Guo or by using dynamic methods using virtual ma-
chines [5, 17, 16, 12], and page-fault assisted debugging [15, 18].
These systems rely on being able to monitor execution of a running
process and determine where the deobfuscated or modified code is
running. When this is done, a memory dump of the application’s
code is performed so that disassembly may occur.

3.4 Disassembly

Disassembling the binary involves loading it into common tools
such as IDA Pro [11] or OllyDbg [22]. This is where the actual
code comprehension occurs. IDA Pro provides an excellent inter-
face to annotate and understand the code. The graphing methods
are primitive but can help to explain the code on a very high level.
The analysis of code can be broken into two classes: system call
analysis and code comprehension.

System call analysis is the process of looking at the relevant li-
brary calls that are made by a portion of code. For instance if the
application reads a file, then performs a network operation, and later
closes a file, one can reasonably infer that this program is perform-
ing a file transfer. This is a very high-level analysis technique that
provides a good high-level overview of the process. It is inherently
static based analysis and can be easily subverted by software armor-
ing systems. What it does not do is provide information about the
actual code executed by the application.

Code comprehension is the process of discovering the algorithms
or underlying structure of the program. This is typically done when
an interesting portion of code is identified and needs to be under-
stood more fully. For example, this analysis can be based on what
was inferred with system call analysis. Specific portions of code
that need to be identified include encryption or authentication algo-
rithms and any obfuscation code. This identification process can be
labor intensive.

3.5 Identify and analyze relevant portions

There is no set method for determining what is relevant and inter-
esting in the reverse engineering process. While there are a few
techniques, most often this is the step that beginners have the most
trouble with. Some of the techniques that are successfully used are
to look at interesting strings, look at relevant API calls as they relate
to the assembly, and overall examine the code’s interaction with the
OS.

Looking for strings inside the executable is typically the first step
most people will choose. For instance when reversing an executable
one sees a URL for an unknown website or network address. This
can be used to find a call-home or network communication portion
of the code. Many times strings will bear a similarity to common
formats such as email addresses. Once these are identified, any
reference to them can be explored. Most commonly this will expose
some of the email functionality of the program.

Finding the cross-references to commonly used system calls is
another step in the process. By looking at things like any file access
API, any files modified by the system can be traced. Likewise, other
relevant APIs, such as network traffic and registry modifications
indicate modification of the state of the system.



Figure 1: Visualization of the Netbull Virus Protected with the Mew Packer

This portion of the reverse engineering process is fundamentally
imprecise and exactly what we want to improve upon. The com-
mon problems that beginners report is not knowing where to start
within the code. Too often they are bogged down with the minute
details rather than the big picture. VERA seeks to improve this by
providing a high-level overview of the entire process execution.

4 VERA ARCHITECTURE

Our tool consists of three main parts. First we have modified
the hypervisor-based monitoring framework, Ether, to monitor and
track program execution including memory reads and writes. Us-
ing the output of this data we construct a directed graph of all the
basic blocks of an executable (represented as graph nodes). We use
a weighted graph system from the Open Graph Display Framework
(OGDF) to layout the graphs. The weight associated with each node
is the number of times that block of code was executed in the analy-
sis run. Similarly, edge weight is the number of times the particular
control path was executed. The data is then displayed through the
visualization interface. VERA provides a navigable interface to ex-
plore the code. It also links and connects to the IDA Pro reverse
engineering tool to aid more detailed analysis.

Figure 2: VERA and Ether Framework Architecture Modifications

4.1 Hypervisor Program Monitoring Using Ether

Ether is a set of patches and applications that have been added to
the Xen hardware virtualization framework. The modifications alter
Xen to be able to attach to and monitor a running program without
detection. This gives us several distinct advantages when analyz-
ing programs. First, program verification and protection code will
not be triggered, thereby allowing the program to execute normally.
Second, obfuscations that are meant to defeat traditional debugger
and tracing systems are ineffective against the Ether system. Third,
the overall state and structure of the virtualized system is preserved.
Attempts by the program to detect monitoring will not yield results.

We have extended Ether in a couple of key ways to enable the
analysis and visualization of applications, see Figure 2. Using the
Ether control program, we added functionality that allows us to
log reads, writes, and executes inside the program. This gives us
the requisite data to generate our program flow graphs. Additional
functionality determines the proper time to dump the current state

of the running executable to allow us to circumvent any packer or
obfuscation inside of the program. The initial implementation of
Ether contained a hypervisor-based unpacking system. We have
moved the logic of this to the dom0 user-space to enable use of
more traditional software development tools. Finally, we have im-
plemented a new import reconstruction tool to allow better analysis
of DLL interactions.

The end result of these modifications is a trace file containing
every statement execution, memory read and write, and the disas-
sembly of the executed instruction. Periodic memory snapshots of
the executable are also stored for further analysis using IDA Pro.
The data is then processed for visualization and analysis.

4.2 Graph Parsing and Layout

VERA performs the following actions to parse trace files generated
from Ether. First, the instructions are parsed to determine the loca-
tion of the basic blocks. These basic blocks will create the nodes in
our program’s visualization. Transitions of execution between the
basic blocks become the edges. A count of the number of execu-
tions determines the edge weight and is represented by thicker edge
lines. Finally certain characteristics of the original executable are
represented by altering the color of the associated node.

Once the graph is produced, we then use the Open Graph Draw-
ing Framework (OGDF) to organize and layout the graph. Using
this library allows us to render large graphs quickly and efficiently.
Other systems such as the ubiquitous GraphViz could not handle
graphs with large complexity. We chose the weighted symmetric
layout option to organize the data. Other graphing methods such as
circular layouts were found to not convey the appropriate informa-
tion in an effective manner.

Once the layout is complete it is then sent to the visualization
tool VERA.

5 VISUALIZATION AND PRESENTATION: VERA

The display engine uses a 2D view of the data which is translated
into a 3D space. This provides for better zooming and introspection
features for the code. It avoids many of the 3D aspects of represent-
ing the data. While 3D views generally provide a compelling view
of the data, we have found that the 2D view is more useful for quick
initial analysis. The graph data is represented in the OGDF GML
format for ease of integration with that tool. This file format con-
tains graph drawing primitives such as X and Y coordinates, along
with coloring primitives. Our visualization tool parses and displays
this data.

Each vertex of the code represents a basic block of execution
of the program. This consists of all assembly operations that are
contained between two adjacent branching operations. Many other
programs choose to represent data at the function or method level
of detail. The reason behind our decision lies with malicious soft-
ware analysis. During the initial phase of execution, the program



does not follow the standard format of functions. Many of the ob-
fuscations deliberately try to exploit this reliance of functions for
analysis tools.

The characteristics chosen are the following: Yellow represents
execution of code that is present in both the on-disk and in-memory
executables. This indicates that the code is the same between the
two executables. Red indicates execution in a section with high
entropy. Most packers and obfuscators are able to compress an ex-
ecutable such that it has an even distribution of data. Areas of high
entropy inside of the original executable indicate where the pro-
gram has transitioned to the unpacked portions of the executable.
Green is execution into non-existent code sections. If the executed
instruction is non-existent in the on-disk executable, this indicates
that the code is generated dynamically or is self-modifying. These
data areas most often are dynamically allocated in heap space, such
as that returned by malloc. Light Purple shows executiong where
a section exists on disk, but not in the run-time executable This is
most often found when data is allocated in the PE section headers,
but not used until runtime. Neon green shows instructions that dif-
fer from the in-memory and on-disk executables. This is another
sign that points to execution of self-modifying code.

Figure 3: Close-up of the Mew unpacking loop

Once the data is presented the view can be manipulated to hone
in on information. Zooming, panning, and interaction are all imple-
mented in a method similar to the Google Maps interface. Zooming
is accomplished by using the scroll wheel of the mouse. To navi-
gate through the map, the left button of the mouse is clicked on the
screen. This allows the entire display to be “dragged” to reveal dif-
ferent portions of the executable. Interaction with the data is done
via mouse-over. When hovering over a specific node or basic block,
information about it is displayed. This includes a link to bring up
the data inside of IDA Pro, a partial disassembly, reference counts,
and areas of memory modification. Right-clicking of the node al-
lows labeling, which can then be propagated to IDA Pro.

The colors chosen could present trouble to someone with red-

green color-blindness. To mitigate this an alternate set of colors
are provided. These colors can be enabled with minimal effort by
recompiling the program.

Figure 4: Zoomed detail view of the Mew unpacking code just after
initial unpacking loop

By explicitly propagating information between IDA Pro and
VERA, we are able to better facilitate analysis as the user can make
annotations using either tool as discoveries are made and have those
same annotations available in both tools. This supports better use
of both tools and leverages both tools for faster reversing.

5.1 Feature Identification

Identifying program phases is broken down into a few discrete
tasks: identifying the unpacking code, identifying the initialization
portions, and identifying primary loops of execution. We break the
analysis of programs down into these groups from empirical obser-
vation of many virus samples. Many non-malicious programs also
exhibit this same behavior. These generalizations can be used in the
majority of cases to identify the relevant behavior.

Identifying the unpacking loop of a program is relatively straight
forward. It is typically any of the tightly bound loops found im-
mediately after the entry point of the program. Figure 3 shows the
unpacking loop for the MEW packer. The initial execution begins
at the bottom with the starting point. From this figure, we see that
there are multiple loops involved in deobfuscating the original pro-
gram. Identifying the end of the unpacking loop is done by looking
for the loop exits to continuous portions of solid colors. The longest
contiguous portion of the executable is the light purple region. The
first basic block of this region is most likely the original entry point
of the program. This claim was validated by manually unpacking
the sample and comparing the observed value with that of standard
unpacking methods.

Initialization modules of the program are classified as long
chains of basic blocks that have only one entrance and execution.
In Figure 1 this is the middle portion that starts at the original entry
point and ends at the left where the three branches occur. These
portions of the executable typically deal with allocating memory,
opening files and resources for later use, and accessing network
resources. It is important to note that much of the initialization por-
tion is not limited to this area and can be found in later portions.
Finding the general area of initialization is a big step in narrowing
down the scope of interest.

The final area of interest is composed of the main execution
loops. In the center of the leftmost portion of Figure 1. The darker
edges indicate heavily executed loops. By refining our analysis to
this portion we can find the main backdoor portion of the system.
This code activates itself, performs an initial call-back, and then
waits for incoming connections.



6 APPLICATION OF ANALYSIS: MEBROOT

To show the practicality of using VERA on a real data set, we have
used VERA to analyze the initial loading point of the Mebroot tro-
jan (MD5: 1f7fed180237ed352d274c69012a4717). Mebroot is a
master boot record infecting malware that runs on a modern operat-
ing system [1]. Its primary purpose is to steal credit card numbers
and other financial information from its victims. It also is used as
a download agent to start other malicious code on an infected ma-
chine. Most of the malicious functionality is implemented in kernel
mode. We will use VERA to analyze the usermode loading capa-
bility.

Figure 5: Mebroot initial 45 minute busy loop

The initial execution analysis was performed by letting Mebroot
run for approximately 5 minutes. The results were shown in Fig-
ure 5 and were extremely limited. Since there is very little informa-
tion shown, this portion of the program is most likely a busy loop
to prevent rapid analysis and often leads the analyst down a faulty
trail. By allowing execution to continue for 12 hours we were able
to get a much broader view of the execution of the trojan. This is
shown in Figure 6.

Figure 6: Mebroot overview of entire execution process

One of the difficult analysis tasks for Mebroot is its initial load-
ing functions. The trojan prevents itself from being analyzed by
first entering a busy loop for approximately 45 minutes. During
this time, nothing of interest happens. Once this delay is complete
Mebroot will then infect the master boot record of the host. The
master boot record holds the initialization code which is later in-
jected into the running Windows kernel after the boot process has
occurred.

From the graph we were able to correlate the execution addresses
to that inside of the disassembler IDA Pro. One of the main features
we noticed is a technique known as mid-instruction point jumping.
This obfuscation technique relies on the density of data in the Intel
instruction set. When a static disassembler such as IDA Pro ana-
lyzes the code, the instructions are not the same as those that are
executed. Nick Harbour discusses this very problem in [9] and is
exactly what is present inside of Mebroot. Knowing this fact about
Mebroot allows us to have IDA correct its view of the disassembled
code. Knowing about this trick is extremely useful from the analyst
perspective as it provides an accurate view of the code in question.

The rest of Mebroot executes inside of the priveleged kernel
space and is not evident in this analysis. We know that the trojan
successfully executed based on network logs and IDS signatures
that identified the IP address as a Mebroot infection.

7 USER STUDY

To evaluate how effective this tool and approach are for the analy-
sis of executables, we have performed a preliminary user study. The
users attended a reverse engineering training course that was given
over the prior week. They learned the process outlined in section 3
and all passed a certification test based on this process. After users
were given an introduction to the use of the tool and a set of printed
instructions for VERA, they were walked through a typical analy-
sis to familiarize them with the tool and approach. Following this
training session, users were asked to perform an evaluation of the
preliminary visualization tools of VERA for two malware samples.
These samples were encrypted with two different packers: UPX
and Mew.

Users were specifically asked to identify what aspects of their
tools helped with each step in the standard evaluation process. First
find the original entry point of a packed executable. Second exe-
cute the program to look for any discerning output. Use tools to
monitor changes to the system while executing. Next load the pro-
gram and begin the reverse engineering process, deobfuscating the
binary as needed. Fourth identify the initialization portions of the
program executable. Finally identify main loops to show relevant
and interesting code sections to focus analysis.

At each stage in the process, users were requested to respond
to how they had accomplished the main task for each step and to
describe what had been discovered in that step.

At the end of the analysis phase, users were asked to evaluate
the advantages and disadvantages of using VERA, whether using
VERA sped up their analysis, and whether they found anything that
that they did not think they would find using traditional techniques
or missed anything they would have found using traditional tech-
niques. Finally, users were asked whether they were likely to use
VERA again and whether they would recommend VERA to col-
leagues.

The user success in finding specific sections of code are shown
in Figure 7, where the number of users who found the original entry
point (OEP), initialization code, and main loops are displayed. Fur-
ther, as shown, all users said that they were likely to use VERA
again and would recommend it. This indicates acceptance for
VERA from both novice and experienced users, although a sub-
stantially larger experiment would be necessary for statistical sig-
nificance.

The only substantially negative comment of all user responses



Figure 7: This chart shows the number of users who found spe-
cific sections of code for the two different samples using VERA. OEP
stands for the original entry point. The chart also shows that all six
users said they would use VERA again and that they would further
recommend VERA.

.

was that although User 1 was able to identify the beginning of a
loop, that user could not identify the end of the loop; this user said
the many loops became convoluted.

User 1 said he was “able to pick out areas of interest more
quickly”. User 2 “saw tight main loops at a glance, much easier
than using IDA alone”. User 5 said it was “easy to identify orig-
inal entry point through visual representation of execution paths”.
User 6 said ”its great to be able to see where the important stuff that
actually executes a lot”.

Some significant suggestions were provided for improving
VERA. User 2 would “like to be able to enter a memory address
and see basic blocks that reference the address highlighted”. User
3 would like the ability to “hide and show all or individual loops”,
which was similar to a suggestion by User 6.

In the overall evaluation, User 1 said “Wonderful way to visu-
alize analysis and to better focus on areas of interest”, User 2 said
“Fantastic Tool. This has the potential to significantly reduce anal-
ysis time”, and User 4 said “It rocks. Release ASAP”. Overall, this
user study indicates both the usefulness and usability of VERA.

8 CONCLUSION AND FUTURE WORK

The VERA framework we have presented provides an enhanced
method to speed reverse engineering. This tool has been used in a
variety of commercial and academic settings to better understand
the flow and composition of a compiled executable. The user study
shows that the tool enhances analysis and lowers the total amount
of time necessary to reverse engineer an executable.

We have modified the Ether analysis framework to better en-
able traditional analysis techniques, including our own visualiza-
tion tool. These have been added to the mainline Ether system.

There are several areas of future work that will be explored.
First, better highlighting of the loops inside the executable will be
implemented. This was a common request from users for the tool.
Second, a kernel based method of program analysis will be devel-
oped. This is in response to the transition of modern malware to
the Windows kernel architecture. Finally a 3D visualization envi-
ronment will be explored to provide further insight into program
analysis.

ACKNOWLEDGEMENTS

The authors wish to thank Alan Erickson, Cort Dougan, Paul Royal,
Artem Dinaburg, and Moses Schwartz for their invaluable help.

REFERENCES

[1] K. Alkio. Mbr rootkit, a new breed of malware. F-Secure

Blog. http://www.f-secure.com/weblog/archives/

00001393.html.

[2] U. Bayer. Ttanalyze: A tool for analyzing malware. Masters thesis,

Technical University of Vienna, 2005.

[3] J. Bohnet and J. Döllner. Visual exploration of function call graphs for

feature location in complex software systems. In SoftVis ’06: Proceed-

ings of the 2006 ACM symposium on Software visualization, pages

95–104, New York, NY, USA, 2006. ACM.

[4] C. Cifuentes, T. Waddington, and M. V. Emmerik. Computer security

analysis through decompilation and high-level debugging. In Eighth

Working Conference on Reverse Engineering. IEEE Computer Society

Washington, DC, USA, 2001.

[5] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analy-

sis via hardware virtualization extensions. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS), Nov.

2008.

[6] P. Ferrie. Attacks on virtual machine emulators. Symantec Advanced

Threat Research, 2006.

[7] P. Ferrie. Anti-unpacker tricks - part one. Virus Bulletin, 2008.

[8] F. Guo, P. Ferrie, and T.-c. Chiueh. A study of the packer and its

solutions. In RAID, Cambridge, Massachusettes.

[9] N. Harbour. Advanced software armoring and polymorphic kung-fu.

In Defcon 16, Aug. 2008.

[10] HBGary. Responder professional. Product Description Page.

https://www.hbgary.com/products-services/

responder-professional/.

[11] Hexrays. Ida pro disassembler and debugger. Product Description

Page. http://www.hex-rays.com/idapro/.

[12] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code ex-

tractor for packed executables. In Proceedings of the 5th ACM Work-

shop on Recurring Malcode (WORM), Oct. 2007.

[13] J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker. Finding

diversity in remote code injection exploits. In Internet Measurement

Conference, Rio de Janeiro, Brazil, 2006. ACM.

[14] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight

dynamic binary instrumentation. In ACM SIGPLAN 2007 Conference

on Programming Language Design and Implementation (PLDI 2007),

San Diego, CA, 2007. ACM.

[15] D. Quist and V. Smith. Covert debugging: Circumventing software

armoring. In Blackhat USA, Aug. 2007.

[16] P. Royal. Alternative medicine: The malware analyst’s blue pill. In

Blackhat USA, Aug. 2008.

[17] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. Polyunpack:

Automating the hidden-code extraction of unpack-executing malware,

2006.

[18] J. Stewart. Ollybone: Semi-automatic unpacking on ia-32. In Defcon

14, Las Vegas, NV, 2006.

[19] A. Telea and L. Voinea. An interactive reverse engineering environ-

ment for large-scale c++ code. In SoftVis ’08: Proceedings of the 4th

ACM symposium on Software visualization, pages 67–76, New York,

NY, USA, 2008. ACM.

[20] A. Vasudevan and R. Yerraballi. Spike: Engineering malware analysis

tools using unobtrusive binary-instrumentation. volume 48, Hobart,

Tasmania, Australia, January 2006. Australian Computer Society, Inc.

[21] Y. Xia, K. Fairbanks, and H. Owen. Visual analysis of program flow

data with data propagation. In VizSec ’08: Proceedings of the 5th

international workshop on Visualization for Computer Security, pages

26–35, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] O. Yuschuk. Ollydbg debugger and disassembler. Product Description

Page. http://www.ollydbg.de/.

[23] Zynamics. Binnavi. Company Product Description Page. http:

//www.zynamics.com/binnavi.html.


